the neutral nickel dithiete species found in the perylene donor-acceptor molecular solid.³ The neutral species has an Ni-S distance of 2.122 Å, 0.013 Å shorter than the 2.135 Å for the presently reported monoanion. While expansion of the Ni-S bond upon a one-electron reduction of the nickel complex is consistent both with theoretical predictions¹⁹ and with the existing structural data,²⁰ it is only on the borderline of being statistically significant.

The perfluoromethyl carbons are very much bent out of the plane of the inorganic anion, seemingly as a consequence of either intramolecular or packing forces, but the large fluorine vibrational amplitudes shown in Figure 1 (mean amplitudes of 0.2-0.8 Å) imply that the CF₃ groups are nearly free rotors. Fluorine amplitudes of about the same size are extant in the structure of the cobalt dithiete dimer²¹ but are small in the closely packed perylene–nickel dithiete molecular solid.³

The interaction between the organic cation and thiete ligands is illustrated in Figure 2 in which the view is normal to the nickel dithiete anion. The closest con-

(19) G. N. Schrauzer and V. P. Mayweg, J. Am. Chem. Soc., 87, 3585 (1965).

tacts (ranging between 3.4 and 4.3 Å, Table V) are between the tropylium ion and the thiete ligands, with the tropylium ion being in effect sandwiched between alternate thiete ligands to form a chainlike structure (Figure 3). The tropylium cations are inclined by 17° to the plane of the nickel dithiete monoanion.

Summary and Conclusions

The ability of nickel dithiete to behave as a strong organic oxidizing agent has been demonstrated by its reaction with cycloheptatriene to form the tropylium salt of nickel dithiete monoanion.

The packing in this ionic compound is loose compared to the neutral donor-acceptor complexes previously studied.³ This implies that, for the nickel dithiete aromatic complexes, the covalent ground state may be more strongly binding than the excited ionic state.

Acknowledgments.—We wish to thank Professor A. H. Maki for stimulating discussions of nickel dithiete chemistry. Professor Phillip Radlick of this department generously donated samples of cycloheptatriene and tropylium tetrafluoroborate.

The computation center at Riverside, Calif., made available the IBM 360-50 for which we are grateful.

CONTRIBUTION FROM THE DEPARTMENT OF INORGANIC CHEMISTRY, UNIVERSITY OF NIJMEGEN, NIJMEGEN, THE NETHERLANDS

Preparation, Structure, and Properties of Bis(N,N-di-*n*-butyldithiocarbamato)gold(III) Bromide and Bis(N,N-di-*n*-butyldithiocarbamato)gold(III) Tetrabromoaurate(III)

By P. T. BEURSKENS, J. A. CRAS, and J. G. M. van der LINDEN

Received April 11, 1969

The preparation, electric conductivity, and ultraviolet and infrared spectra of the compounds bis(N,N-di-*n*-butyldithiocarbamato)gold(III) bromide and tetrabromoaurate(III), $[Au(S_2CN(n-C_4H_9)_2)_2]Br$ and $[Au(S_2CN(n-C_4H_9)_2)_2][AuBr_4]$, are reported. The crystal structure of the bromide has been determined by a three-dimensional X-ray analysis. This compound crystallizes in the monoclinic space group P2/c. The unit-cell dimensions, measured from photographs, are $a = 11.45 \pm$ 0.02 Å, $b = 4.97 \pm 0.01$ Å, $c = 22.62 \pm 0.03$ Å, and $\beta = 97.45 \pm 0.10^{\circ}$, with two molecules per unit cell. Photometric measurement of equiinclination Weissenberg photographs yielded 1164 intensities. The structural parameters were refined by least-squares methods to a conventional *R* factor of 0.09. The structure analysis and all reported properties agree with the ionic structure $[Au(S_2CN(n-C_4H_9)_2)_2]^+Br^-$. The Au(III) is coordinated in planar fashion by four S atoms, the two nonequivalent Au-S distances being 2.309 ± 0.006 and 2.334 ± 0.006 Å. Preparation and properties of the tetrabromoaurate agree with a similar ionic structure $[Au(S_2CN(n-C_4H_9)_2)_2]^+[AuBr_4]^-$. This complex easily rearranges into the nonionic complex dibromo-N,N-di-*n*-butyldithiocarbamatogold(III). Other reactions and interconversions among $[AuS_2CN (n-C_4H_9)_2]_2$, $Au(S_2CN(n-C_4H_9)_2)_3$, $[Au(S_2CN(n-C_4H_9)_2)_2][AuBr_2]$, $AuBr_2S_2CN(n-C_4H_9)_2$, $[Au(S_2CN(n-C_4H_9)_2)_2]Br$, and $[Au(S_2CN(n-C_4H_9)_2)_2][AuBr_4]$ are described and discussed. Remarkable shifts of the C-N stretching frequency in the infrared spectra of the bromide and the tetrabromoaurate as compared with that of the analogous dibromoaurate¹ are explained in terms of the crystallographic positions of the anions near the nitrogen atom of the cation.

Introduction

Recently the structure and properties of the compounds $[Au(dtc)_2][AuBr_2]^1$ and $AuBr_2(dtc)^2$ (dtc = N,N-di-*n*-butyldithiocarbamate = $S_2CN(n-C_4H_9)_2$)

(1) P. T. Beurskens, H. J. A. Blaauw, J. A. Cras, and J. J. Steggerda, *Inorg. Chem.*, 7, 805 (1968).

(2) P. T. Beurskens, J. A. Cras, and J. J. Steggerda, ibid., 7, 810 (1968).

were reported. The structure of the former was proved to be $[Au(dtc)_2]^+[AuBr_2]^-$ with Au(III)- and Au(I)containing complex ions, respectively. We have now prepared the new complexes $[Au(dtc)_2]Br$ and [Au- $(dtc)_2][AuBr_4]$. The preparations and electrical conductivity measurements reveal these structures to be ionic also, with the same cation, $Au(dtc)_2^+$. However,

⁽²⁰⁾ D. Sartain and M. R. Truter, J. Chem. Soc., 1264 (1967).

⁽²¹⁾ J. H. Enemark and W. N. Lipscomb, Inorg. Chem., 4, 1729 (1965).

Atomic Parameters for $Au(dtc)_{2}Br$ with Standard Deviations ^a											
	×	у	Z	β ₁₁	β ₂₂	β ₃₃	^β 12	β ₁₃	β ₂₃		
Au	.0000	.0000	.0000	.0060(1)	.0329(4)	.0014(0)	0059(2)	.0001(0)	0000(1)		
Br	.5000	.8109(5)	.2500	.0107(2)	.0370(14)	.0039(1)	.0000	0026(1)	.0000		
S(1)	.0534(3)	.0187(10)	.1019(1)	.0118(3)	.0488(20)	.0019(1)	0110(10)	0001(1)	.0009(5)		
S(2)	.1629(3)	.2861(9)	.0128(2)	.0091(3)	.0507(22)	.0021(1)	0088(7)	.0000(1)	0004(4)		
N	.2484(8)	.3122(21)	.1285(4)	.0073(9)	.0220(53)	.0019(2)	0005(19)	0005(4)	0027(10)		
C(1)	.1671(11)	.2241(28)	.0875(5)	.0077(11)	.0277(68)	.0019(2)	- .0036(25)	.0000(4)	0008(12)		
C(2)	.2491(11)	.2392(31)	.1923(6)	B = 4.0	(3) 2 ²						
0(3)	.1998(11)	.4734(36)	.2246(6)	4.6	(3)						
C(4)	.1864(15)	.3871(37)	.2879(7)	5.9	(4)						
C(5)	.1493(16)	.6312(41)	.3256(8)	6.7	(4)						
℃(6)	.3437(13)	.5007(40)	.1124(7)	5.9	(3)						
0(7)	.4426(17)	.2569(44)	.1000(8)	7.6	(5)						
0(8)	.5429(24)	.4147(54)	.0846(11)	10.3	(7)						
C(0)	.6393(17)	.1964(45)	.0681(8)	7.6	(5)						

TABLE I

^a The key to the atomic numbering is given in Figure 3. The estimated standard deviations given in parentheses are the result of the least-squares refinement. The expression used for the temperature factors of the anisotropic refined atoms is: $\exp[-(\beta_{11}h^2 + \beta_{22}k^2 + \beta_{22}k^2)]$ $\beta_{33}l^2 + 2\beta_{12}hk + 2\beta_{13}hl + 2\beta_{23}kl)].$

they show remarkable shifts of the C-N stretching frequency in the infrared spectra as compared with that of the $[Au(dtc)_2][AuBr_2]$ complex. Especially the increase of this frequency in the order $[Au(dtc)_2]$ - $[AuBr_2]$, $[Au(dtc)_2][AuBr_4]$, $AuBr_2(dtc)$, and [Au- $(dtc)_2$]Br stimulated us to further investigations. Furthermore the observed¹ distortion of symmetry in the cation in $[Au(dtc)_2][AuBr_2]$, *i.e.*, a difference between the two S-C bonds of borderline significance (3) esd's), made the determination of another crystal structure with the same cation of interest. Therefore the crystal structure of the bromide compound was solved.

Experimental Section³

 $Materials. - The \ compounds \ Au(dtc)_2AuBr_2, ^{1,4} \ AuBr_2(dtc), ^4$ and Na(dtc)⁵ were prepared as described. N,N,N',N'-Tetra-nbutylthiuram disulfide ((bu)₄ tds = $S_4C_2N_2(C_4H_9)_4$) was obtained commercially (Fluka, Praktikum).

Analyses .--- Gold was analyzed by atomic absorption photometric methods, using diluted aqua regia solutions of gold as standards. The other elemental analyses were carried out by the microanalytical department of this university.

Preparations of $Au(dtc)_2Br.$ —(A)⁶ To a solution of 2.0 g of AuBr₂(dtc) in 50 ml of methylene chloride a freshly prepared equimolar amount of Na(dtc) in 50 ml of ethanol was slowly added, with stirring. An intermediate brownish black coloring disappeared rapidly. The solution was filtered, most of the solvent was evaporated, and a yellow product was precipitated with diethyl ether. Several recrystallizations from acetonitrile and diethyl ether gave orange-yellow needles, in 60% yield.

(B) An anion-exchange resin (30 g of Amberlite IRA-400 (Cl)) was converted to the Br⁻ form with KBr in water. Water was removed with ethanol, and the ethanol was removed with dimethyl sulfoxide (DMSO). A solution of 1.5 g of Au(dtc)2-AuBr₂ in DMSO was passed through the column and the resin

was washed with DMSO. The collected solutions and washings were treated as in (A); a yield of 70% was obtained.

(C) A 1.8-g sample of KAuBr₄·2H₂O was dissolved in 350 ml of an aqueous saturated NaBr solution. The resulting solution was cooled to 0° and then carefully reduced with a 0.1 M Na₂SO₃ solution until the solution became colorless. Thereafter this solution was immediately added to a solution of 1.2 g of (bu)₄tds in 25 ml of ethanol. An orange-yellow precipitate was obtained, which was taken up in methylene chloride and treated as in (A); yield, 95%.

(D) To 1.6 g of Au(dtc)₂AuBr₂ in 20 ml of methylene chloride an equimolar amount of (bu)4tds in 10 ml of methylene chloride was added. The solution turned from yellow to orange-red. The complex was precipitated with diethyl ether and recrystallized from acetonitrile and diethyl ether; yield, 60%.

(E) The anion-exchange resin, used in procedure B, being in the $AuBr_2^-$ form, was eluted with a solution of $(bu)_4$ tds in DMSO. The solution was treated as in (A); yield, 35%.

In all cases the yellow crystalline products have been characterized and shown to be identical by their melting point (135.8-136.3°), ir spectra, and X-ray powder diagrams. Anal. Calcd for C₁₈H₃₆N₂S₄AuBr: C, 31.5; H, 5.3; N, 4.1; S, 18.7; Au, 28.7; Br, 11.7. Found: C, 31.5; H, 5.3; N, 4.2; S, 18.7; Au, 28.7; Br, 11.8.

Preparation of Au(dtc)₂AuBr₄.-To 1.0 g of Au(dtc)₂Br dissolved in 50 ml of methylene chloride an equimolar amount of KAuBr₄ in 10 ml of methylene chloride was added. After filtration the solution was treated with diethyl ether to precipitate the complex. The product was purified by dissolving it in methylene chloride, the solution was filtered if necessary, and an equal volume of diethyl ether was added; cooling to 0° gave red-violet crystals in 75% yield, mp 118-119°. Anal. Calcd for C18H86-N₂S₄Au₂Br₄: C, 19.3; H, 3.2; S, 11.4; Au, 35.1. Found: C, 19.4; H, 3.2; S, 11.4; Au, 35.8.

Physical Measurements .--- Electrical conductivities were measured in nitrobenzene solutions, as described before.¹ Uv spectra were measured in methylene chloride (Uvasol, Merck) solutions in the range 200-600 m μ , using a Zeiss PMQ II spectrophotometer. Ir spectra in the region 4000-650 cm⁻¹ were measured with a Beckman IR4 double-beam instrument. All specimens were examined in KBr pellets. A Varian V-4502 instrument was used for esr measurements.

X-Ray Crystal Structure Analysis of Au(dtc)₂Br.-The compound Au(dtc)₂Br crystallizes in the monoclinic system as prismatic needles elongated on [010]. A crystal of size 0.065 \times

⁽³⁾ Thanks are due to Mr. P. J. J. Koonen and Mr. J. M. Smits for technical assistance.

⁽⁴⁾ H. J. A. Blaauw, R. J. F. Nivard, and G. J. M. van der Kerk, J. Organometal. Chem. (Amsterdam), 2, 236 (1964).

⁽⁵⁾ S. Åkerström, Arkiv Kemi, 14, 387 (1959).

⁽⁶⁾ This method was suggested by H. J. A. Blaauw.

Figure 1.—Projection of $Au(dtc)_2Br$ along b. The gold atoms are situated on centers of symmetry and the bromine atoms on twofold rotation axes; other centers and axes are indicated.

sitometer and another 632 reflections were estimated as zero or very weak reflections. The intensities were corrected for Lorentz and polarization factors. No absorption correction was applied ($\mu = 160 \text{ cm}^{-1}$; maximum effect on the intensities, 30%). The five layers were scaled by Wilson's statistical method.

The structure was solved by Patterson and Fourier' methods and refined by full-matrix least-squares⁸ methods. The function that was minimized is $\Sigma w(|F_o| - |F_o|)^2$. The weight w for each reflection was calculated as $w = n/(50 + |F_o| + 0.01|F_o|^2)$ with n = 1 or 0.25 for the 1164 measured reflections (n = 0.25for the 299 weakest of these) and n = 0 for the very weak or unobserved reflections. The atomic scattering factors were those of the neutral atoms, corrected for anomalous scattering ($\Delta f'$), using data from the "International Tables for X-Ray Crystallography." The conventional R factor is defined as $R = \Sigma ||F_o| - |F_c|| / \Sigma ||F_o||$ for the 1164 measured reflections; values given in parentheses include the very weak and zero observed reflections.

After refinement of the five scaling factors and the positional and individual isotropic temperature factor parameters of all atoms, except hydrogen atoms, the R factor was 0.08 (0.13). A difference Fourier synthesis showed some anisotropy of the gold, bromine, and sulfur atoms. The refinement was continued with fixed individual scaling factors. Three cycles of refinement of the overall scale factor, the positional parameters, anisotropic temperature factor parameters for Au, Br, S₁, S₂, N, and C₁, and isotropic temperature factors for C₂ through C₉ gave R = 0.06(0.09). The physical significance of the anisotropic vibrational parameters is reduced by the uncertainty of the scale factors and the lack of an absorption correction. The final difference Fourier synthesis with the measured reflections up to sin $\theta =$

Figure 2.—Projection of Au(dtc)₂Br on the plane (102). Arrows indicate a twofold axis.

 $0.08 \times 0.64 \text{ mm}^3$ was used for oscillation (around the b axis) and equiinclination Weissenberg (h0l through h4l) and precession $(hk_0, hk_1, 0k_l, and 1k_l)$ photographs with nickel-filtered Cu Ka radiation (1.5418 Å). The unit-cell dimensions at 20°, measured from oscillation and Pt-calibrated Weissenberg photographs, and their root-mean-square errors were $a = 11.45 \pm 0.02$ Å, b = 4.97 ± 0.01 Å, $c = 22.62 \pm 0.03$ Å, $\beta = 97.45 \pm 0.10^{\circ}$, and $V = 1276 \pm 5$ Å³. The calculated density is $D_x = 1.78 \pm 0.01$ g cm⁻³ for Z = 2, as compared to the density measured in paraffin oil using a pycnometer which is $D_{\rm m} = 1.77 \pm 0.01$ g cm⁻³. The systematic extinctions are h0l for l odd, which are compatible with the space groups Pc and P2/c. The structure was solved assuming the crystal to be centrosymmetric, confirming the space group to be P2/c. Three-dimensional intensity data were collected from five layers of integrated multiple-film Weissenberg photographs. Of about 2900 possible independent reflections, 1164 reflections were measured with an optical den0.5 showed a $-1.0 \text{ e}^{-/\text{Å}3}$ peak at the position of the gold atom, 0.5 e^{-/Ås} at S₁, and 1.5 e^{-/Ås} at the bromine atom position. At the calculated hydrogen atom positions 0.2–0.5 e^{-/3}Å peaks were found.

Results and Discussion

Crystal Structure of Au(dtc)₂**Br.**—The atomic parameters are given in Table I. The structure is illustrated in Figures 1 and 2. Bond distances and angles⁹ are given in Figure 3. The observed and calculated structure amplitudes are given in Table II.

⁽⁷⁾ A. Fourier program and some data-handling programs, written by P. T. B., were used on an IBM 360/50 computer.

⁽⁸⁾ The program ORFLS by Busing, Martin, and Levy (1962) was modified and used for simultaneous refinement of isotropically and anisotropically vibrating atoms.

⁽⁹⁾ Using "An Interatomic Distances and Angles Program," by R. Shiono and S. S. C. Chu.

L, H=5 x=0 L -28 10 11 -1 -24 28 20 -1 -20 35 42 - -20 34 28 - -12 42 41 - -16 25 23 - -12 65 65 - -12 65 65 - -12 69 97 6 -1 9 97 0 -1 41 41 5 -1 19		CBSH 30 32 25 29 3 32 40 34 36 37 40 32 31 2 19 22 30 77 5 24 30 44 50 44 50	$\begin{array}{c} \text{L, } \text{H=2 K=1} \\ -24 & 27 & 28 \\ -22 & 40 & 44 \\ -20 & 63 & 59 \\ -19 & 54 & 53 \\ -17 & 35 & -32 \\ -16 & 59 & 53 \\ -14 & 59 & 53 \\ -13 & 32 & -28 \\ -12 & 103 & 104 \\ -11 & 31 & -19 \\ -10 & 94 & 105 \end{array}$	L, H=5 K=1 -24 31 32 -22 47 46 -27 47 46 -18 35 36 -16 50 51 -14 73 74 -13 43 40 -12 93 94 -10 85 86 -9 33 27 -4 45 45	$ \begin{array}{c} \text{L, } \text{Ha9} \text{ K=1} \\ -14 & 39 & 36 \\ -14 & 55 & 51 \\ -12 & 39 & 39 \\ -12 & 39 & 37 \\ -18 & 38 & 40 \\ -6 & 78 & 74 \\ -4 & 56 & 62 \\ -6 & 57 & 77 \\ -2 & 56 & 57 \\ -2 & 56 & 57 \\ -2 & 54 & 60 \\ 3 & 36 & 35 \\ \end{array} $	E FACTORS L, H#3 &*22 -27 35 39 -20 43 50 -18 38 39 -16 54 54 -14 37 36 -17 111 113 -10 96 98 -3 24 15 -8 110 119 -7 29 -24 -6 60 59	FOR AU (ILC L, $H=7 K=2$ -14 33 33 -14 35 31 -12 52 50 -10 31 28 -6 44 36 -6 44 46 -6 30 29 -7 70 -2 53 53 -2 53 53 -2 7 -14	/2 BT** L, H=1 K=3 -27 2 4 -27 46 49 -18 47 45 -16 54 55 -14 33 31 -12 85 84 -11 23 22 -10 75 75 -49 108 -6 35 32 -4 9 106	L, 11-6 K*3 -16 29 29 -12 47 50 -12 48 47 -10 45 47 -4 30 30 -4 75 75 -4 14 72 -7 90 87 -7 90 87 -7 90 54 2 70 54 1 25	L, H=2 X44 -14 37 1:d -17 45 47 -17 45 47 -6 43 42 -6 43 42 -6 43 42 -1 44 -3 30 -24 -2 59 2: -1 29 -24 -1 59 -24
4 0300402347575754	-2 136 165 1 - 4 9 101 - 9 104 - 9 10 - 9 104 - 9 104 - 9 10 - 9 104 -	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	<pre> 4</pre>	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6 97 98 7 30 29 8 36 39 17 74 84 17 24 84 17 24 24 14 55 55 16 24 18 35 18 35 41	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	-26 14 17 -24 24 33 -27 36 34 -18 38 4" -18 38 4" -16 46 45 -14 72 73 -17 107 104 -17 71 70 -17 35 86 -2 65 63 -4 160 156 -7 13 111 -7 150 157 -6 55 4 -7 154 155	L, /412 K*0 -12 27 28 -17 33 43 -17 33 40 -2 37 40 -2 37 40 -2 37 40 -2 37 51	10 103 103 11 25 -33 12 55 -33 14 56 56 56 14 56 57 15 14 37 18 74 37 18 74 32 20 33 34 22 33 34 24 30 28		n 50 47 1 37 32 2 51 49 6 47 45 8 47 62 10 35 20 12 31 32 1 49 12 40 39 12 40 39 12 40 39 12 40 39 12 40 39 12 40 39 12 51 49 12 51 49 12 51 49 12 51 49 12 51 49 12 51 49 12 51 49 13 51 49 14 54 52 12 51 49 12 51 52 12 51 49 12 51 52 12 51	10 55 63 184 43 43 20 52 51 -27 45 47 -27 46 47 -16 48 49 -16 48 90	-6 67 55 -2 74 74 0 30 80 2 80 81 4 56 58 6 84 6 84 8 46 8 46 8 46 10 37 12 34 14 58 14 37 30 14 37 30	$ \begin{array}{c} 1, 112 \\ 1, 112 \\ 2, 132 \\ 1, 112 \\ 1, 1$	L, H=7 K=3 -17, 31 K=3 -14, 40 K=34 -32 54 54 -10 557 -44, 40 S57 -44, 40 S57 -44, 40 S57 -7 74 42 -7 74 42 1 7 42 42 1 7 42 42 -7 75 52 4 40 -7 75 52 -7 75 52	2 12 35 5 55 35 9 50 49 0 31 30 1 1 30 1 1 30 1 2 42 42 12 41 40 -10 31 30 -0 31 20 -5 31 20 -6 31 20 -6 31 20 -7 42 44 (53 49 (53 49 - 3 40 - 3 50 - 2 42 - 2 5 -
	A 92 HI 1141 131 114 131 114 41 41 12 00 07 14 41 41 14 74 14 43 40 24 77 20 C, 147 X80 -74 37 43 32 -77 43 32 -77 43 32	2 31 44 4 45 48 - 20 30 1 35 40 1 22 23 12 31 36 L, H=13 K=0 -10 36 38 -4 30 27 -2 34 39 -2 24 39 -2 24 39 -2 26 4 -2 26 36 -1 2 26 -2 6 34	L, $(4=3, K=1)$ -24 - 34 - 31 -22 - 48 - 49 -20 - 49 - 47 -14 - 55 - 54 -16 - 38 - 35 -14 - 86 - 38 - 35 -14 - 86 - 97 -11 - 52 - 53 -12 - 40 - 68 -12 - 10 - 87 -11 - 52 - 53 -12 - 10 - 87 -13 - 3073 -7 - 31 - 3073 -7 - 32 - 69 -5 - 22 - 21		 F (1) (2) F (2)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	L, 11=9 K=2 -16 31 35 -14 44 43 -12 47 40 -10 37 34 -0 53 56 -6 49 51 -6 82 79	3 10 222 22 20 4 23 4 23 10 22 4 4 45 10 23 10 23	2 677 61 10 7 2 6 13 22 6 14 22 6 14 22 6 14 25 5 14 24 4 15 35 6 14 25 5 14 25 5 15 25 5 14 25 5 15 25 5 16 45 5 1	 31 26 4 23 43 43 44 47 44 47 44 47 44 47 44 47 43 42 47 43 42 47 48 49 44 49 44 40 41 40 41 40 41 40 41 40 42 41 40 43 42 44 45 46 47 48 49 49 42 49 49 41 51 49 44 49 49 41 51 49 41 51 49 41 51 49 41 51 49 41 49 41 49 41 41 41 41 42 44 45 46 46 47 48 49 49 44 45 44 45 44 45 44 45 44 45 44 46 46 47 48 48 49 49 44 46 47 48 48 49 49
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	L, H=14 K=C -5 25 21 -4 22 20 -2 17 18 L, H=9 -23 3 111 -125 3 3 11 -125 3 59 107 7 79 79 3 55 120 3 779 79 3 99 11 77 -63 9 99 11 77 -63	$\begin{array}{c} -4 & 11 + & 125 \\ -3 & 73 & -68 \\ -3 & 14 + & 174 \\ -1 & 46 & 46 \\ -1 & 46 & 46 \\ 1 & 74 & -22 \\ 2 & 45 & 85 \\ 3 & 46 & 46 \\ 4 & 87 & 86 \\ 4 & 87 & 86 \\ 4 & 87 & 86 \\ 1 & 184 & 45 \\ 1 & 48 & 48 \\ 1 & 48 & $	1 to 50 25 1 A 30 3P 2 A 31 3C 2 A 31 3C 2 A 23 29 - 20 3A 28 - 20 3A 3A 28 - 20 3A 3A 28 - 20 3A 3A 28 -	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	/ 32 -2-4 3 7.6 7.3 10 #4 85 34 57 5.3 14 57 5.3 14 55 50 L H#5 #26 -27 43 43 -16 51 53 -14 74 75 -12 83 83 -14 74 75 -14 75 53 -14 75 75 75	-2 4h 45 - 56 64 2 49 50 4 62 49 10 56 69 10 56 52 12 47 46 10 57 12 47 46 14 28 31 16 38 40 -16 29 36 -16 45 45 -12 35 35 -10 4r 41 -9 36 38		∩ 14 - 1(2 6(1 52 4 33 37 7 6 26 9 26 28 1 - 33 32 1 - 33 32 - 16 33 32 - 16 33 32 - 12 31 31 12 31 31 4 34 34 4 44 44 2 22 2 2	1 31 20 2 47 44 4 50 50 4 40 50 5 40 50 10 41 40 -1' 34 30 -5 50 10 41 40 -1 34 30 -5 42 42 -2 61 52 -2 64 54 2 42 42
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	16 47 46 15 44 - 39 16 61 60 18 57 53 24 70 70 24 36 39 24 24 27 L, H=1 x=1 -24 31 26	16 59 57 18 74 70 20 44 43 22 37 35 24 22 22	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10 76 56 20 36 56 20 32 26 30 -22 26 49 -23 26 30 -14 53 25 -14 53 55 -12 38 37 -14 53 55 -12 38 37 -14 70 24 -5 29 25 -4 32 29 -4 32 29 -2 103 107 -5 47	4 39 40 8 60 37 12 76 36 1. H=10 K=1 -6 79 37 -6 39 -6 30 -6 30 10 26 30	a 72 32 4 66 47 6 48 48 7 44 40 -6 44 40 -4 74 50 -2 74 45 -2 74 45
	-247 47 -247 47 -551 46 +76 64 +551 46 +66 66 +244 43 144 53 12 44 53 12 44 53 12 44 53 12 44 53 12 -22 25 L. H+9 K=0 -24 22 25 L. H+9 K=0 -22 22 -27 2 22 -27 2 22 -16 3 2 -16 3 39 -16 43 39	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	L, 1944 K=1 -24 32 55 46 -22 55 46 52 -118 45 46 1-14 67 67 -12 96 1C1 -12 96 1C1 -11 46 469 1C1 -10 97 101 -7 48 90 -7 48 84 -6 33 80 -4 120 120 -7 102 -7 102 -7 102 -7 102 -7 102 -7 102 -7 10 -7 1	12 35 29 14 58 58 16 44 42 18 47 44 20 25 22 L, H#8 x=1 -16 30 35 -14 58 54 -10 59 54	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	L, H=6 K=2 -22 33 35 -19 32 31 -16 24 39 -16 41 61 -12 37 39 -12 52 23 -6 71 71 -6 71 -11 -5 29 -10	L+ H=11 x=2 =1e 27 32 =14 29 30 =12 29 28 =10 25 28 =6 39 40 =6 39 40 =6 39 40 =6 32 32 43 46 = 43 46 = 32 22	1 34 -29 2 72 70 4 73 17 6 79 76 8 63 62 10 73 71 14 46 49 16 42 40 18 44 51 20 72 25 22 25 27 -16 28 32 -16 28 32 -16 36 51	L, H=9 K=4 1 24 -24 2 57 57 4 42 41 P 57 56 9 24 -27 12 63 54 12 49 47 L, H=1 X=4 -12 48 55	
	-10 43 485 -8 476 385 -4 34 354 -4 34 354 -4 34 354 -2 265 104 -7 206 104 -7 266 364 6 77 70 20 10 41 37 14 55 556 16 16 223 19 28 33 20 10 13	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-1 40 25 0 133 156 1 73 67 2 61 79 4 100 101 5 87 83 4 100 100 10 5 87 10 5 87 10 5 85 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4	-8 46 45 -6 55 -6 55 -7 63 60 -1 40 -35 2 66 62 2 37 35 6 64 62 3 7 35 6 64 62 1 3 3 -22 1 2 49 46 1 4 3 -22 1 2 49 46 1 4 45 1 4 51 49 1 8 28 30	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-8 50 49 -6 31 27 -4 32 84 -2 73 64 2 23 64 2 23 17 4 70 80 6 66 67 8 92 91 12 51 51 12 51 51 14 33 34 16 53 34 16 53 32 20 32 35	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	

TABLE II Deserved and Calculated Structure Factors for Au(dtc),Br^a

 $a l_{i} |F_{o}|$, and F_{c} are given for constant h and k. Asterisks mark the four rejected reflections (bad spot on photograph or possible extinction). Zero observed reflections are not given; they all have $|F_{c}|$ below the minimum observable value.

The X-ray analysis confirmed the compound to be composed of the ionic units $Au(dtc)_2^+$ and Br^- . The cation, apart from the butyl chains, is planar. In the direction of the needle axis *b* the cations pack above one another. The gold atoms of adjacent cations are separated by the \bar{b} translation, 4.97 (1) Å. Some interionic distances are: Au-S(2), 4.00 (1) Å; S(1)-S(2), 4.42 (1) Å; S(1)-C(1), 4.18 (2) Å; S(1)-N, 4.16 (2) Å. The cages formed by the butyl chains of the cations are occupied by the bromide ions. The shortest van der Waals distances are 3.67 (6) Å and 3.72 (6) Å for bromine-carbon contacts. The bromine-nitrogen distances are 4.46 (2) and 4.47 (2) Å.

The structural features of the present compound are similar to those of the compound $Au(dtc)_2AuBr_2$.¹ The cations $Au(dtc)_2^+$ have similar geometry in both compounds. However in the present compound a difference of 0.025 Å (4 esd's) between the two non-

Figure 3.—Bond angles and distances in $Au(dtc)_2Br$ and atomicnumbering scheme. Projection on the coordination plane AuS₄. The gold atom is situated on a center of symmetry. Standard deviations of the bond distances (Å) are given in parentheses; the accuracy of the bond angles is in the range 0.25° for S-Au-S to 2.0° for C-C-C angles.

equivalent gold-sulfur bond distances is found. Because the estimations for the standard deviations, obtained by least-squares methods, are known to be too low and in view of the fact that absorption corrections were not made, this difference is not significant and we are convinced that the gold(III) coordination, in principle, is of D_{2h} symmetry.

The packing of the cations in the two structures, however, is different. In the present compound the orientation of adjacent cations is the same, whereas cations of two orientations alternate in $[Au(dtc)_2]^+$ - $[AuBr_2]^-$.

Synthesis and Reactions.—Preparations and chemical reactions of the present and some related complexes are presented in the scheme

Analogous to the reaction¹⁰ of $[Au(dtc)]_2$ with $(bu)_4$ tds the dibromoaurate(I) ion was oxidized with $(bu)_4$ tds to obtain the complex $Au(dtc)_2Br$. This reaction was carried out in water (preparation method C), in a methylene chloride solution of $Au(dtc)_2AuBr_2$ (method D), and on an ion-exchange surface (method E; seealso method B). Another preparation (method A) of the same complex is given by the interesting reaction

 $AuBr_2(dtc) + Na(dtc) \longrightarrow Au(dtc)_2Br + NaBr$

This reaction resembles a previously described¹ reaction

 $2AuBr_2(dtc) + [Au(dtc)]_2 \longrightarrow 2Au(dtc)_2AuBr_2$

Both reactions show an intermediate dark coloring of the solution, similar to reactions in which Au(I) is

(10) S. Åkerström, Arkiv Kemi, 14, 403 (1959).

oxidized. This phenomenon was studied by esr techniques at -60 to -40° , where the color remained for several minutes. No resonance signal could be obtained; thus the possibility of an unstable Au(II) intermediate was eliminated. By a metathetical reaction, Au(dtc)₂AuBr₄ was obtained. This ionic complex rearranged easily (boiling in methylene chloride, 41°) to the nonionic isomer AuBr₂(dtc), identified by its lack of electrical conductivity and by its ir spectrum.

Conductivity.—Molar conductivities were measured in nitrobenzene solutions. The following results were obtained: for Au(dtc)₂Br, Λ (in ohm⁻¹ cm² mol⁻¹) = 24.65 (5.71), 25.75 (3.80), 26.61 (2.85), 26.90 (2.28), 27.36 (1.90), 27.73 (1.43), 28.06 (1.14), 28.66 (0.825); for Au(dtc)₂AuBr₄, Λ = 22.02 (3.75), 22.96 (25.01), 23.35 (1.88), 23.60 (1.50), 23.84 (1.25), 24.09 (0.94), 24.71 (0.75), 24.96 (0.63), 25.00 (0.54), 25.16 (0.47), 25.60 (0.34) (numbers in parentheses are millimolar concentrations). These results are consistent with the Onsager limiting law for 1:1 electrolytes in nitrobenzene.

Spectra.—The ultraviolet spectrum of $Au(dtc)_2Br$ was nearly identical with that reported¹ for the $AuBr_2^$ compound. The two absorption bands, measured in methylene chloride, are 35,600 cm⁻¹ (ϵ 37,600) and 31,600 cm⁻¹ (ϵ 42,700). For the $Au(dtc)_2AuBr_4$ compound the values are 35,600 cm⁻¹ (ϵ 46,000) and 31,600 cm⁻¹ (ϵ 25,000).

In the infrared spectra of $Au(dtc)_2Br$ and $Au(dtc)_2-AuBr_4$ the C–N stretching frequencies are at 1583 and 1560 cm⁻¹, respectively.

In the series⁴ AuI₂dtc, AuBr₂dtc, and AuCl₂dtc the C-N stretching frequencies are 1561, 1565, and 1570 cm^{-1} , respectively. The increase in this order is apparently due to the increasing electronegativity of the halogen, resulting in a higher positive charge on the nitrogen atom. In the ionic compounds Au(dtc)₂-AuBr₂, Au(dtc)₂AuBr₄, and Au(dtc)₂Br we have observed a similar increase of the C-N stretching frequencies: 1550, 1560, and 1583 cm^{-1} , respectively. This phenomenon can be explained by assuming an increasing positive charge on the nitrogen atom, induced by the anion, in that order. In view of the crystallographic position of the anion near the nitrogen atom. in this structure such a direct inductive effect is reasonable. The small bromide ion would certainly have the most pronounced inductive effect, followed by the larger $AuBr_4^-$ ion. The influence of $AuBr_2^-$ is small, apparently because of its orientation relative to the nitrogen atom (the N-Br distance is 3.69 (2) Å and the N-Au(I) distance is 4.39 (2) Å). Therefore the effect of the bromine will be partly compensated by the gold atom. The importance of the orientation of the anion is also shown by the isomorphic series¹ Au(dtc)₂-AuX₂ where the C-N stretching frequencies are at 1550 cm⁻¹, independent of X for X = Cl, Br, and I.

Acknowledgment.—The authors wish to thank Professor J. J. Steggerda for his continued interest in this work.